TaSYP71, a Qc-SNARE, Contributes to Wheat Resistance against Puccinia striiformis f. sp. tritici

نویسندگان

  • Minjie Liu
  • Yan Peng
  • Huayi Li
  • Lin Deng
  • Xiaojie Wang
  • Zhensheng Kang
چکیده

N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are involved in plant resistance; however, the role of SYP71 in the regulation of plant-pathogen interactions is not well known. In this study, we characterized a plant-specific SNARE in wheat, TaSYP71, which contains a Qc-SNARE domain. Three homologs are localized on chromosome 1AL, 1BL, and 1DL. Using Agrobacterium-mediated transient expression, TaSYP71 was localized to the plasma membrane in Nicotiana benthamiana. Quantitative real-time PCR assays revealed that TaSYP71 homologs was induced by NaCl, H2O2 stress and infection by virulent and avirulent Puccinia striiformis f. sp. tritici (Pst) isolates. Heterologous expression of TaSYP71 in Schizosaccharomyces pombe elevated tolerance to H2O2. Meanwhile, H2O2 scavenging gene (TaCAT) was downregulated in TaSYP71 silenced plants treated by H2O2 compared to that in control, which indicated that TaSYP71 enhanced tolerance to H2O2 stress possibly by influencing the expression of TaCAT to remove the excessive H2O2 accumulation. When TaSYP71 homologs were all silenced in wheat by the virus-induced gene silencing system, wheat plants were more susceptible to Pst, with larger infection area and more haustoria number, but the necrotic area of wheat mesophyll cells were larger, one possible explanation that minor contribution of resistance to Pst was insufficient to hinder pathogen extension when TaSYP71 were silenced, and the necrotic area was enlarged accompanied with the pathogen growth. Of course, later cell death could not be excluded. In addition, the expression of pathogenesis-related genes were down-regulated in TaSYP71 silenced wheat plants. These results together suggest that TaSYP71 play a positive role in wheat defense against Pst.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Two Different Sources of Durable Resistance and Susceptible Cultivar of Wheat to Stripe Rust (Puccinia striiformis f. sp. tritici)

A study was conducted to assess the durable resistance in a near isogenic line of spring wheat (Triticum aestivalis L.), possessing resistance gene Yr-18 to some isolates (race specific resistance) of stripe rust (Puccinia striiformis f. sp. tritici), namely Thatcher Yr-18 and durable resistance of an cultivar of spring wheat to all isolates of stripe rust (race non- specific resistance), namel...

متن کامل

Genetic analysis and molecular mapping of wheat genes conferring resistance to the wheat stripe rust and barley stripe rust pathogens.

ABSTRACT Stripe rust is one of the most important diseases of wheat and barley worldwide. On wheat it is caused by Puccinia striiformis f. sp. tritici and on barley by P. striiformis f. sp. hordei Most wheat genotypes are resistant to P. striiformis f. sp. hordei and most barley genotypes are resistant to P. striiformis f. sp. tritici. To determine the genetics of resistance in wheat to P. stri...

متن کامل

Inheritance and molecular mapping of barley genes conferring resistance to wheat stripe rust.

ABSTRACT Most barley cultivars are resistant to stripe rust of wheat that is caused by Puccinia striiformis f. sp. tritici. The barley cv. Steptoe is susceptible to all identified races of P. striiformis f. sp. hordei (PSH), the barley stripe rust pathogen, but is resistant to most P. striiformis f. sp. tritici races. To determine inheritance of the Steptoe resistance to P. striiformis f. sp. t...

متن کامل

Wheat TaNPSN SNARE homologues are involved in vesicle-mediated resistance to stripe rust (Puccinia striiformis f. sp. tritici)

Subcellular localisation of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and their ability to form SNARE complexes are critical for determining the specificity of vesicle fusion. NPSN11, a Novel Plant SNARE (NPSN) gene, has been reported to be involved in the delivery of cell wall precursors to the newly formed cell plate during cytokinesis. However, functions...

متن کامل

Glycerol-3-Phosphate Metabolism in Wheat Contributes to Systemic Acquired Resistance against Puccinia striiformis f. sp. tritici

Glycerol-3-phosphate (G3P) is a proposed regulator of plant defense signaling in basal resistance and systemic acquired resistance (SAR). The GLY1-encoded glycerol-3-phosphate dehydrogenase (G3PDH) and GLI1-encoded glycerol kinase (GK) are two key enzymes involved in the G3P biosynthesis in plants. However, their physiological importance in wheat defense against pathogens remains unclear. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016